Câu 125 trang 95 Sách bài tập (SBT) Toán 8 tập 1

Cho góc vuông xOy, điểm A trên tia Oy. Điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào ?

Giải:                                                          

Vì điểm C đối xứng với điểm A qua điểm B ⇒ BA = BC

Kẻ CH ⊥ Ox

Xét hai tam giác vuông AOB và CHB:

\(\widehat {AOB} = \widehat {CHB} = {90^0}\)

BA = BC (chứng minh trên)

\(\widehat {ABO} = \widehat {CBH}\) (đối đỉnh)

Do đó: ∆ AOB = ∆ CHB (cạnh huyền, góc nhọn) ⇒ CH = AO

A, O cố định ⇒ OA không đổi nên CH không đổi.

C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng OA.

Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.

Vậy C chuyển động trên tia Km // Ox, cách Ox một khoảng không đổi bằng OA.

Các bài cùng chủ đề