Câu 135 trang 97 Sách bài tập (SBT) Toán 8 tập 1

Tứ giác ABCD có tọa độ các đỉnh như sau: A(0; 2), B( 3; 0), C(0; −2 ), D(−3; 0). Tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó ?

Giải:                                                             

A(0; 2) và C(0; −2) nên hai điểm A và C đối xứng nhau qua O (0, 0) ⇒ OA = OC

B(3; 0) và D(−3; 0) nên hai điểm B và D đối xứng qua O (0; 0) ⇒ OB = OD

Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Ox ⊥ Oy hay AC ⊥ BD

Vậy tứ giác ABCD là hình thoi

Trong ∆ OAB vuông tại O. Theo định lý Pi-ta-go ta có:

\(\eqalign{  & A{B^2} = O{A^2} + O{B^2}  \cr  & A{B^2} = {2^2} + {3^2} = 4 + 9 = 13  \cr & AB = \sqrt {13}  \cr} \)

Chu vi hình thoi bằng \(4\sqrt {13} \)

Các bài cùng chủ đề