Câu 15 trang 81 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng trong hình thang có nhiều nhất là hai góc tù, có nhiều nhất là hai góc nhọn

Giải:

Xét hình thang ABCD có AB// CD

\(\widehat A\) và \(\widehat D\) là hai góc kề với cạnh bên.

\( \Rightarrow \widehat A + \widehat D = {180^0}\) (2 góc trong cùng phía ) nên trong hai góc đó có nhiều nhất 1 góc nhọn và có nhiều nhất là 1 góc tù.

\(\widehat B\) và \(\widehat C\) là hai góc kề với cạnh bên

\( \Rightarrow \widehat B + \widehat C = {180^0}\) (2 góc trong cùng phía) nên trong hai góc đó có nhiều nhất 1 góc nhọn và có nhiều nhất 1 góc tù. Vậy bốn góc là : \(\widehat A,\widehat B,\widehat C,\widehat D\) có nhiều nhất là hai góc nhọn và nhiều nhất là hai góc tù.

Các bài cùng chủ đề