Câu 151 trang 98 Sách bài tập (SBT) Toán 8 tập 1

Cho hình vuông ABCD. Gọi E là một điểm nằm giữa C và D. Tia phân giác của góc DAE cắt CD ở F. Kẻ FH ⊥ AE (H ∈ AE), FH cắt BC ở G.

Tính số đo góc FAG.

Giải:                                                           

Xét hai tam giác vuông DAF và HAF:

\(\widehat {ADF} = \widehat {AHF} = {90^0}\)

\({\widehat A_1} = {\widehat A_2}\) (gt)

AF cạnh huyền

Do đó: ∆ DAF = ∆ HAF (cạnh huyền, góc nhọn)

⇒ DA = HA

DA = AB (gt)

Suy ra: HA = AB

Xét hai tam giác vuông HAG và BAG:

\(\widehat {AHG} = \widehat {ABG} = {90^0}\)

HA = BA (chứng minh trên)

AG cạnh huyền chung

Do đó: ∆ HAG = ∆ BAG (cạnh huyền, cạnh góc vuông)

\( \Rightarrow {\widehat A_3} = {\widehat A_4}\)nên AG là tia phân giác của \(\widehat {EAB}\)

\(\widehat {FAG} = {\widehat A_2} + {\widehat A_3} = {1 \over 2}\left( {\widehat {DAE} + \widehat {EAB}} \right) = {1 \over 2}{.90^0} = {45^0}\)

Các bài cùng chủ đề