Câu 25 trang 89 Sách bài tập (SBT) Toán 8 tập 2

Cho hai tam giác A’B’C’ và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số chu vi của gai tam giác cũng bằng k.

Giải:

Vì ∆ A’B’C’ đồng dạng ∆ ABC theo tỉ số k nên ta có:

\({{A'B'} \over {AB}} = {{A'C'} \over {AC}} = {{B'C'} \over {BC}} = k\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\({{A'B'} \over {AB}} = {{A'C'} \over {AC}} = {{B'C'} \over {BC}} = {{A'B' + A'C' + B'C'} \over {AB + AC + BC}}\)

Suy ra: \({{A'B' + A'C' + B'C'} \over {AB + AC + BC}} = k\)

Vậy \({{PA'B'C'} \over {PABC}} = k\) với P: chu vi

 

 

 

 

 

 

Các bài cùng chủ đề