Câu 30 trang 10 Sách bài tập (SBT) Toán 8 tập 2

Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích.

a. \({x^2} - 3x + 2 = 0\)

b. \(- {x^2} + 5x - 6 = 0\)

c. \(4{x^2} - 12x + 5 = 0\)

d. \(2{x^2} + 5x + 3 = 0\)

Giải:

a. \({x^2} - 3x + 2 = 0\) \( \Leftrightarrow {x^2} - x - 2x + 2 = 0\)

\(\eqalign{  &  \Leftrightarrow x\left( {x - 1} \right) - 2\left( {x - 1} \right) = 0  \cr  &  \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0 \cr} \)

\( \Leftrightarrow x - 2 = 0\) hoặc \(x - 1 = 0\)

+   \(x - 2 = 0 \Leftrightarrow x = 2 \)

+   \(x - 1 = 0 \Leftrightarrow x = 1\)

 Vậy phương trình có nghiệm x = 2 hoặc x = 1.

b. \( - {x^2} + 5x - 6 = 0\) \( \Leftrightarrow  - {x^2} + 2x + 3x - 6 = 0\)

\(\eqalign{  &  \Leftrightarrow  - x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0  \cr  &  \Leftrightarrow \left( {x - 2} \right)\left( {3 - x} \right) = 0 \cr} \)

\( \Leftrightarrow x - 2 = 0\) hoặc \(3 - x = 0\)

+     \(x - 2 = 0 \Leftrightarrow x = 2\)

+     \(3 - x = 0 \Leftrightarrow x = 3\)

 Vậy phương trình có nghiệm x = 2 hoặc x = 3

c. \(4{x^2} - 12x + 5 = 0\)

\(\eqalign{  &  \Leftrightarrow 4{x^2} - 2x - 10x + 5 = 0  \cr  &  \Leftrightarrow 2x\left( {2x - 1} \right) - 5\left( {2x - 1} \right) = 0  \cr  &  \Leftrightarrow \left( {2x - 1} \right)\left( {2x - 5} \right) = 0 \cr} \) \( \Leftrightarrow 2x - 1 = 0\) hoặc \(2x - 5 = 0\)

+   \(2x - 1 = 0 \Leftrightarrow x = 0,5\)

+   \(2x - 5 = 0 \Leftrightarrow x = 2,5\)

 Vậy phương trình có nghiệm x = 0,5 hoặc x = 2,5

d. \(2{x^2} + 5x + 3 = 0\)

\(\eqalign{  &  \Leftrightarrow 2{x^2} + 2x + 3x + 3 = 0  \cr  &  \Leftrightarrow 2x\left( {x + 1} \right) + 3\left( {x + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 1} \right)\left( {2x + 3} \right) = 0 \cr} \)

\( \Leftrightarrow 2x + 3 = 0\) hoặc \(x + 1 = 0\)

+   \(2x + 3 = 0 \Leftrightarrow x =  - 1,5\)

+    \(x + 1 = 0 \Leftrightarrow x =  - 1\)

 Vậy phương trình có nghiệm x = -1,5 hoặc x = -1

Các bài cùng chủ đề