Câu 42 trang 84 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.

Giải:

Giả sử hình thang ABCD có AB // CD, AB < CD.

I, K lần lượt là trung điểm hai đường chéo BD, AC

Gọi F là trung điểm của BC

Trong tam giác ACB ta có:

K là trung điểm của cạnh AC

F là trung điểm của cạnh BC

Nên KF là đường trung bình của ∆ BDC

⇒ KF // AB và \(KF = {1 \over 2}AB\) (tính chất đường trung bình của tam giác)

Trong tam giác BDC ta có:

I là trung điểm của cạnh BD

F là trung điểm của cạnh BC

Nên IF là đường trung bình của ∆ BDC

⇒ IF // CD và \(IF = {1 \over 2}CD\) (tính chất đường trung bình của tam giác)

FK // AB mà AB // CD nên FK // CD

FI // CD (chứng minh trên)

Suy ra hai đường thẳng FI và FA trùng nhau.

⇒ I, K, F thẳng hàng, AB < CD ⇒ FK < FI nên K nằm giữa I và F

IF = IK + KF

\(\eqalign{
& \Rightarrow IK = IF - KF \cr
& = {1 \over 2}CD - {1 \over 2}AB = {{CD - AB} \over 2} \cr} \)

Các bài cùng chủ đề