Câu 46 trang 95 Sách bài tập (SBT) Toán 8 tập 2

Cho tam giác ABC vuông tại A, AC = 4cm, BC = 6cm. Kẻ tia Cx vuông góc với BC (tia Cx và điểm A khác phía so với đường thẳng BC).Lấy trên tia Cx điểm D sao cho BD = 9cm (h.32)

Chứng minh rằng BD // AC.

Giải:

(hình 32 trang 95 sbt)

 

Xét hai tam giác vuông ABC và CDB, ta có:

\(\widehat {BAC} = \widehat {DCB} = 90^\circ \)    (1)

Mà \({{AC} \over {CB}} = {4 \over 6} = {2 \over 3}\)

\({{CB} \over {BD}} = {6 \over 9} = {2 \over 3}\)

Suy ra: \({{AC} \over {CB}} = {{CB} \over {BD}}\)     (2)

Từ (1) và (2) suy ra ∆ ABC đồng dạng ∆ CDB (cạnh huyền và cạnh góc vuông tỉ lệ)

Suy ra: \(\widehat {ACB} = \widehat {CBD}\)

Vậy AC // BD (vì có các cặp góc ở vị trí so le trong bằng nhau).

Các bài cùng chủ đề