Câu 49 trang 37 Sách bài tập (SBT) Toán 8 tập 1

a. Tìm một phân thức (một biến) mà giá trị của nó được xác định với mọi giá trị của biến khác các số nguyên lẻ lớn hơn 5 và nhỏ hơn 10.

b. Tìm một phân thức (một biến) mà giá trị của nó được xác định với mọi giá trị của biến khác \( \pm \sqrt 2 \)

Giải:

a. Một phân thức một biến mà giá trị của nó xác định với mọi giá trị của biến khác các số nguyên lẻ lớn hơn 5 và nhỏ hơn 10 ta có tập hợp số nguyên lẻ đó { 7; 9 } nên \(x \ne 7\) và \(x \ne 9\)

Suy ra: \(x - 7 \ne 0\)  và \(x - 9 \ne 0\)

Ta chọn phân thức là \({a \over {\left( {x - 7} \right)\left( {x - 9} \right)}}\) (với a là một hằng số)

b. Phân thức một biến mà giá trị của nó được xác định với mọi giá trị của biến khác \( \pm \sqrt 2 \)\( \Rightarrow x \ne \sqrt 2 \)  và \(x \ne  - \sqrt {2.} \)

Suy ra: \(x - \sqrt 2  \ne 0\)và \(x + \sqrt 2  \ne 0\) ta chọn phân thức:

\({a \over {\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)}} = {a \over {{x^2} - 2}}\) (với a là một hằng số)