Câu 5 trang 83 Sách bài tập (SBT) Toán 8 tập 2

Cho tam giác ABC. Từ điểm D trên cạnh BC, kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AC và AB theo thứ tự tại F và E (hình dưới)

Chứng minh rằng :

\({{AE} \over {AB}} + {{AF} \over {AC}} = 1\)

Giải:

(xem hình 4)

Trong ∆ ABC ta có: DE // AC (gt)

Suy ra: \({{AE} \over {AB}} = {{CD} \over {CB}}\) (định lí Ta-lét) (1)

Lại có: DF // AB (gt)

Suy ra: \({{AF} \over {AC}} = {{BD} \over {BC}}\) (định lí Ta-lét) (2)

Cộng trừ vế (1) và (2), ta có:

\({{AE} \over {AB}} + {{AF} \over {AC}} = {{CD} \over {CB}} + {{BD} \over {BC}} = {{CD + BD} \over {BC}} = {{BC} \over {BC}} = 1\)

Các bài cùng chủ đề