Câu 53 trang 86 Sách bài tập (SBT) Toán 8 tập 1

Dựng hình thang cân ABCD(AB // CD), biết AD = 2cm, CD = 4cm, AC = 3,5cm.

Giải:

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, CD = 4cm, AC = 3,5cm. Điểm B thỏa mãn 2 điều kiện:

-            B nằm trên đường thẳng đi qua A và song song với CD

-            B cách D một khoảng bằng 3,5 cm

Cách dựng:

-            Dựng tam giác ADC biết AD = 2cm, AC = 3,5 cm, CD = 4cm

-            Dựng tia Ax // CD, Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C

-            Dựng cung tròn tâm D bán kính 3,5cm. Cung này cắt Ax tại B. Nối CB ta có hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB // CD.

AC = BD = 3,5 cm

Vậy hình thang ABCD là hình thang cân.

Hình thang cân ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm thỏa mãn yêu cầu bài toán.

Biện luận: Tam giác ADC luôn dựng được nên hình thang ABCD luôn dựng được. Cung tròn tâm D bán kính 3,5cm cắt Ax tại 1 điểm ta dựng được một hình thang thỏa mãn yêu cầu bài toán.

Các bài cùng chủ đề