Câu 61 trang 40 Sách bài tập (SBT) Toán 8 tập1

Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Ví dụ giá trị của phân thức \({{{x^2} - 25} \over {x + 1}} = 0\) khi \({x^2} - 25 = 0\) và \(x + 1 \ne 0\) hay \(\left( {x - 5} \right)\left( {x + 5} \right) = 0\) và\(x \ne  - 1\). Vậy giá trị của phân thức này bằng 0 khi \(x =  \pm 5\)

Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0 :

a. \({{98{x^2} - 2} \over {x - 2}}\)

b. \({{3x - 2} \over {{x^2} + 2x + 1}}\)

Giải:

a.  \({{98{x^2} - 2} \over {x - 2}}\)= 0 khi \(98{x^2} - 2 = 0\) và x – 2 ≠ 0

Ta có: x – 2 ≠ 0 ⇒ x ≠ 2

\(\eqalign{  & 98{x^2} - 2 = 0 \Rightarrow 2\left( {49{x^2} - 1} \right) = 0 \Rightarrow \left( {7x - 1} \right)\left( {7x + 1} \right) = 0  \cr  &  \Rightarrow \left[ {\matrix{   {7x + 1 = 0}  \cr   {7x - 1 = 0}  \cr}  \Rightarrow \left[ {\matrix{   {x =  - {1 \over 7}}  \cr   {x = {1 \over 7}}  \cr} } \right.} \right. \cr} \)

\(x = {1 \over 7}\)và \(x =  - {1 \over 7}\) thỏa mãn điều kiện x ≠ 2

Vậy \(x = {1 \over 7}\) hoặc \(x =  - {1 \over 7}\) thì phân thức \({{98{x^2} - 2} \over {x - 2}}\) có giá trị bằng 0.

b. \({{3x - 2} \over {{x^2} + 2x + 1}}\)\( = {{3x - 2} \over {{{\left( {x + 1} \right)}^2}}} = 0\) khi 3x – 2 = 0 và \({\left( {x + 1} \right)^2} \ne 0\)

Ta có : \({\left( {x + 1} \right)^2} \ne 0 \Rightarrow x + 1 \ne 0 \Rightarrow x \ne  - 1\)

\(3x - 2 = 0 \Rightarrow x = {2 \over 3}\)

\(x = {2 \over 3}\) thỏa mãn điều kiện x ≠ - 1

Vậy \(x = {2 \over 3}\) thì phân thức \({{3x - 2} \over {{x^2} + 2x + 1}}\) có giá trị bằng 0.