Câu 8.2 trang 96 Sách bài tập (SBT) Toán 8 tập 2

Tam giác ABC vuông tại A có đường cao AH = n = 10,85cm và cạnh AB = m = 12,5cm. Hãy tính độ dài các cạnh còn lại của tam giác (chính xác đến hai chữ số thập phân)

Giải:

(hình bs. 13 trang 125 sbt)

 

Xét hai tam giác ABC và HBA, ta có:

\(\widehat {BAC} = \widehat {BHA} = 1v\)

Góc B là góc nhọn chung

Vậy ∆ ABC đồng dạng ∆ HBA

Suy ra: \(\eqalign{  & {{AB} \over {HB}} = {{AC} \over {HA}} = {{BC} \over {BA}}  \cr  &  \Rightarrow {m \over {HB}} = {{AC} \over n} = {{BC} \over m}  \cr  &  \Rightarrow AC = {{mn} \over {HB}},BC = {{{m^2}} \over {HB}}. \cr} \)

Xét tam giác vuông ABH, ta có:

\(HB = \sqrt {A{B^2} - A{H^2}}  = \sqrt {{m^2} - {n^2}} \)

Từ đó, ta có: \(AC = {{m.n} \over {\sqrt {{m^2} - {n^2}} }};BC = {{{m^2}} \over {\sqrt {{m^2} - {n^2}} }}\)

Với m = 12,5cm, n = 10,85cm, ta tính được:

AC ≈ 21,85cm; BC ≈ 25,17cm.

Các bài cùng chủ đề